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Abstract

This work is concerned with generalized convex programming problems,
where the objective and also the constraints belong to a certain class of convex
functions. It examines the relationship of two conditions for generalized convex
programming-self-concordance and a relative Lipschitz condition-and gives
an outline for a short and simple analysis of an interior-point method for gen-
eralized convex programming. It generalizes ellipsoidal approximations for the
feasible set, and in the special case of a nondegenerate linear program it es-
tablishes a uniform bound on the condition number of the matrices occurring
when the iterates remain near the path of centers. I--

Key words: convex program, ellipsoidal approximation, relative Lipschitz
condition, self-concordance

INTRODUCTION

In earlier papers, Jarre [4, 5], Mehrotra and Sun [9], and Nesterov and Nemirovsky
[11, 12] tried to find a rather general class of convex programs that can be solved
by interior-point methods. These authors use logarithmic barrier functions in their
algorithms. Jarre and Mehrotra and Sun have imposed certain conditions on the
constraint functions fi, while Nesterov and Nemirovsky require the barrier function
to be self-concordant. In all cases the conditions guarantee that Newton's method
for minimizing the barrier function converges with a fixed rate of convergence.

When summarizing and relating some of the above results here, we attach great
importance to the underlying geometry and structure of the method. To date, at
large variety of interior-point methods and search directions have heen suggested, all
of which follow the same two components: centering and/or progress in the objective
function. For the sake of clarity, only the method of centers is examined in detail to
illustrate the geometry that is shared by all these methods and to form a foundation L

on which any of these methods can easily be analyzed. A short outline of how to

derive a practical algorithm from the results presented here is given in Section 2.7.

tThis work was supported by a research grant from the Deutsche Forschungsgemeinschaft, and

in part by the U.S. National Science Foundation Grant DDM-8715153 and the Office of Naval
Research Grant N00014-90-J- 1242.
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1. PROBLEM AND CONDITIONS

The problem under study is to find

A* := minifo(x) I x E P },

where
P := {x EB?'R I fi(z) <_ 0 for 1 < i < m}, (1.0)

and the fi E C2(P) are convex functions that fulfill certain conditions specified in
Subsection 1.2. The first and second derivatives of fi(x) will sometimes be referred
to as a row vector Dfi(x) and a square matrix D2 fi(x), and sometimes as a linear
form Dfi(x)[.] and a symmetric bilinear form D2f,(x)[.,.].

For the sake 3f simp!'city we assume that the interior of the feasible set P is
nonempty and bounded. Given a point y in the intersection of the domains of the
functions fi, one can use a phase 1 algorithm as in the appendix of [3] to guarantee
this assumption.

1.1. Possible Conditions on the f,

1.1.1. Self-concordance

The most general condition is given in Nesterov and Nemirowsky [11], requiring that
the barrier functions p(x) := - ln(-f 1 (x)) are a-self-concordant on the interior
P° of P for 1 < i < m. Likewise, for A > A*, the function o(x, A) -ln(A - fo(x))
is required to be self-concordant on P0 .

Definition (self-concordance)
Here, in slight variation to the definition of [12], a function V : P0 -* B? is called
self-concordant on P0 with parameter a (in signs: E Sa(P°)) if V is three times
continuously differentiable in P0 and if for all x E P0 and all h E 1R' the following
inequality holds:

IJD'p(x)[h, h, hit ! 2v/"a(D 2p(x)[h, h]) 3 02 . (1.1)

Intuitively, large values of a imply that the third derivative may be large, i.e. that
p cannot be well approximated by a quadratic function. Clearly, linear or convex
quadratic functions fulfill (1.1) with a parameter a = 0 on fRnl. However, we note
that condition (1.1) is not app!ied to the constraint functions f t themselves, but to
the associated barrier functions Vi (which are not linear or quadratic, even if the fj
are so).

For the sum V(x) = Fmnl Wj(x), the following property is also required in [12].

Definition (strong self-concordance)
A function P': p- R is called strongly a-self-concordant (in signs: E S+(P°))
if it is a-self-concordant and if the level sets {x E P0 Ip(x) < t} are closed in Rn for
all I - 17

intuitively this means that p(x) goes to infinity as x approaches the boundary
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of P', a condition that is naturally fulfilled if the function p is a penalty function
defined as above, but may not hold for a general self-concordant function.

Remark 1 (Proposition 1.1 in [121)
The concept of self-concordance is affinely invariant in the following sense. If A is
an invertible affine mapping, A :R' --* BR, and V is an a-self-concordant function,
i.e. p E S,(P°), then the function defined by @5(x) := (A-'x) is again a-self-
concordant, o E Sa(AP°).

Further the following simple rule for addition and scaling of self-concordant
functions holds. If the functions Wi are self-concordant with parameters ai on the
domains Pio for i = 1,2 and if ri are positive real numbers, then the function
(p := ri(p1 + r 2 V 2 is a-self-concordant with a = max{ac/rj,a 2 /r 2 } on the domain
P := n P.
Proof. Straightforward. I
Note that Remark 1 also holds for the property of strong self-concordance.

1.1.2. Relative Lipschitz condition

The same motivation as above, having a function which is close to a quadratic
function, has led to the definition of the following Relative Lipschitz Condition in
Jarre [5). (See also [2].) The functions fi (0 < i < m) are supposed to be continuous
on P and twice continuously differentiable functions on PO, with Hessian matrices
D2f, fulfilling the Relative Lipschitz Condition,

3M > 0 : Vz E IR' Vy E P0 Vh with IjhjIH,(S) _ 0.5/(l +iM1)

IzT(D 2f,(y + h) - D 2f,(y))zI :_ MIIhjjH,( )z T D2fi(y)z, (1.2)

which bounds the relative change of D2f, in neighboring points y and y + h for small
IlhIIH,(y). Here, II.IIh,() is a certain semi-norm that makes (1.2) affine invariant and
is specified below. Again it is obvious that linear or convex quadratic functions
fi fulfill condition (1.2) with M = 0. (This condition is applied to the constraint
functions fi directly!) The precise definition of the matrix Hi(y) and the associated
semi-norm is given by

Hi(y) := D2( ln(-f,(x)))= D= f(y) +D~fs(y)Dfj(y)
-fi(Y) + f(Y)

and 11hI11,2(v) hTH-(y)h. The matrices H,(y) arise as the Hessians of the logarith-
mic barrier functions. As shown below, the norm given by H(y) :- , H,(y) is
closely related to the shape of the feasible set P, and is a very convenient measure
for analyzing Newton's method. Clearly Hi(!/) is positive semidefinite, since fi is
assumed to be convex. Note that condition (1.2) requires that D'f,(y - h) exi ts
for all h with ijhIIH,(y) < 0.5/(1 + M 1/ 3 ).

Remark 2
If condition (1.2) holds for the function D2fi at a point y E PO (i.e. fi(y) < 0) then
also fi(y + h) < 0 for all h with IlhflH,(,) 0.5/(1 + M1/ 3 ).
Proof: See Appendix. 1
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Given a strictly feasible point y, i.e. a point y such that fi(y) < 0 for all 1 < i <
m, condition (1.2) is only needed for points y + h with IJhIH,(y) _< 0.5/(1 + M 113 )
for all 1 < i < m. Remark 2 guarantees that also fi(y + h) < 0 for all i. Hence

y + h E P', so that in fact condition (1.2) is needed only for points y, y + h E P'.

Example
The Relative Lipschitz Condition allows certain singularities on the boundary of
P, the second derivative of the function f : JR -- JR, x -- .-v e.g. fulfills the
condition with M = 8 on P:= {xlx > 0}.

1.1.3. Relationship between the relative Lipschitz condition and self-
concordance

Loosely speaking, the Relative Lipschitz Condition is sufficient for the resulting
barrier function to be self-concordant. More precisely one can state the following.

Lemma 1
If the second derivative D 2 f of a convex function f fulfills the Relative Lipschitz
Condition (1.2) (for infinitesimal ((hI{) on the domain Pf := {x (f(x) < 0} and if f
is three times continuously differentiable on P7, then the barrier function p(x)

-ln(-f(x)) is a-self-concordant on P7 with the parameter a = (1 + M) 2 .
Proof: See Appendix. I

The converse of Lemma 1 is not true; there even exist non-convex functions
f whose barrier functions W(x) := -ln(-f(x)) are a-self-concordant (and hence
convex) on P7 (see Subsection 2.7. "Extensions"). The idea of self-concordance
and Relative Lipschitz condition however are closely related, and as the following
two statements show, self-concordance in fact is equivalent to a modified Relative
Lipschitz condition. Lemma 2 is taken from [12].

Lemma 2 (Theorem 1.1 in [12])
Let p be strongly a-self-concordant, V E S+(P°), and let a strictly feasible point y E

P0 be given, and h,z E BR?. Define H(y) := D 2 V(y), b := VhTH(y)h = IJhIIH(y),
and x:=y+h.

Then the following is true: If 6 < 1/\/ , then

x = y + h E P0

and
1(1 - V<)IzjH(y) IIZIH () < (1 - ,/ IIZIIH(y).

Proof: See Appendix. I
For b < 2 / one has < 1 + 6vfo6, and thus Lemma 2 implies that

IzT(D 2'p(y + h) - D2cp(y))z <_ 6vrg/ohjIH(,)zTD2p(y)z

(cf. [3] (Lemma 2.1, equivalence of the H-norms)). Hence, a self-concordant barrier
function p also fulfills a Relative Lipschitz condition, where the norm of the vector
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h is measured by D2 p(x) directly (and not by D2 -- ln(- o(x)) ). Conversely, it is
easy to show the following

Remark 3
Let the function p fulfill a Relative Lipschitz condition of the following form (with
the notation of Lemma 2):

(zT(D2 px + h) - D2V(z))zl 5 fl[lhIH()zTD2V(X)z.

Then p is self-concordant with parameter a =/2/4.
Proof: See Appendix. 1

1.1.4. Curvature constraint

Mehrotra and Sun [9] do not need the continuity of the second derivative of the
functions fi, but only a curvature constraint of the form

3K > 1 : Vh E IR' Vx,y E P : 0 < rK- 2hTD 2f,(y)h < hTD2 f,(x)h < K2 hTD2f(y)h.

With this condition they can show the same result as Jarre and Nesterov and Ne-
mirovsky for their algorithms. However, since in the above form the curvature con-
straint excludes linear or semidefinite quadratic functions fi, as well as singularities
on the boundary of P, we will not use this condition here.

1.2. Further Assumptions

In the following we will assume that the functions - ln(-f 1 (x)) are self-concordant
with parameters aj. Note that (by Lemma 1) the logarithmic barrier-functions cpi
of linear and convex quadratic functions fi are 1-self-concordant, and so is their
sum o = 1;__= p(x) (by Remark 1). Thus, the following analysis includes linearly
or quadratically constrained convex programming as a special case with a = 1.

Without loss of generality we further assume that fo is linear. (Otherwise we may
introduce an additional variable x,+,, an additional constraint fm+l(x,xn+I) :=

* fo(x)- Xn+ < 0, and minimize Xn+l. Note, that for this construction the new func-
tion - In(-fro+I) must be self-concordant on the domain {(x,xn+l)Ix E po, fo(x) <
xn+l}. In a practical implementation such a construction may increase the condi-
tion numbers of the Hessians considered in the algorithm.)

Note that by construction the resulting function p(x) = i(x) is strongly

self-concordant on P0 .
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2. PROPERTIES AND A SIMPLE METHOD

For A > A*, let P(A) denote the feasible set P constrained by the additional inequal-
ity fo(x) = cTx < A:

P(A) := P n {xI fo(x) :_ A}.

The method outlined in this section follows a homotopy path A : co -, A* of some
interior point x(A) in P(A). Here, x(A) is chosen as the well known analytic center
of P(A) (Sonnevend [141).

2.1. The Analytic Center

For each parameter oo > A > A* the analytic center x(A) of P(A) is defined as the
unique point x in P(A) ° minimizing the strictly convex logarithmic barrier function'

V(x,A) := -qln(A - fo(x)) - Eln(-fi(x)) (2.1)
i=1

with some fixed q E EV (the positive natural numbers) and P(A = c) := P. In this
paper only the choice q = r is considered; the modification to other values of q is
straightforward. The analytic center depends smoothly on all constraints, also on A,
and as the following analysis shows it can be efficiently approximated by Newton's
method. The strict convexity of p follows immediately from the boundedness of P
and the strong self-concordance of V on P(A)'.

The analytic center x(A) also maximizes the concave function of x

[ m ]l/(m+q)
T(x, A) : (A - fo(x))' (-fi(x))j (2.2)

i=l

over P. One may interpret (2.2) as x(A) maximizing the product of the 'distances'
to the constraints fi(x) < 0.
Proof of concavity of (2.2): see appendix. I

The analytic center x(P) of a set P (or of the set P(A)) is invariant under affine
transformations of P in the sense that an invertible affine transformation A : BV -
Jn applied to the set P, P - AP = {xf(A-tx) < 0} also maps the analytic center
x(P) = argmax[ffj=,(-f(x))] / to Ax(P) = argmax[f-I=(-f(A-lX)) 1/  =
x(AP). It is also invariant under scaling ,f the functions fi.

The function V in (2.1) is a-self-concordant on P°(A) if the functions ln(-fi(x))
are ai-self concordant, and, according to remark 1, a = max{i, a,, 1<i<m}, Hence,
for linear or quadratic fi we have a = 1 (by Lemma 1).

'The function v(x,A) in (2.1) defines the analytic center of P(A). For brevity we will also
sometimes deal with the function = - >, ,In(-f, (x)) defining the analytic center of P. Similarly
with 11(x) := D p(x) and H(z, A) D '(x, A). Results for v(x) and H(r) are applied later to

(r, ,) and H(x, A).
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2.2. Ellipsoidal Approximations of P

If the feasible set P is bounded, then the semi-norm in Lemma 2 is in fact a norm
that is closely related to the geometrical shape of P. Lemma 2 already stated an
inner ellipsiodal approximation of P; for any point x E P0 the point x + h E Po if
h belongs to the ellipsoid defined by

Jjh11H(x) < 1Vfa

where 11(x) = D2 p(x). Furthermore one can show the following outer ellipsoidal
approximation of P centered at its analytic center.

Lemma 3 (cf. [51 Corollary 2.15)
Let i be the analytic center of P and h E Rn be arbitrary with

llhllH(t)-- 16v/'m.

Then x + h V P. Proof: See Appendix. I
This two-sided ellipsoidal approximation of the feasible set P around its analytic

center has been shown in [14] for the linear case and in [15, 3] for quadratic fi (see

also [5]). It relates the matrix I1 to the shape of the set P. In the next subsection we
will show that the underlying norm 1.11H is also suitable when analyzing Newton's
method.

2.3. Newton's Method

In the following we will give a proof of quadratic convergence of Newton's method for
approximating the analytic center t of a set P and give explicit constants (depending
only on a) that describe the speed of convergence. Here all "distances" are measured
in the H-norm and related to the concordance parameter a. Lemma 4 has been
proved in modified form in [12] and states that if a Newton step for finding the
center is small, then Newton's method converges. Conversely, Remark 4 guarantees
that if a point y is sufficiently "close" to the analytic center i of P, then again

Newton's method converges. Recalling some notation, the Newton step h(y) starting

at y for finding the analytic center i is given by h(y) = -H-l(y)DV(y)T, with

H(y) = D 2'(y).

Lemma 4 ([121, Theorem 1.3; quadratic convergence with constant --6/()
Let p be a strongly a-self-concordant function defined on a nonempty bounded set

P'. For a point y E P0 define H(y) := D2 p(y), g(y) := Dp(Y)T. Let h := h(y) =
-H(y)-'g(y) be the Newton step starting at y for finding the analytic center i of
P, let h be the following Newton step starting at y + h, and define the lengths of
the Newton steps by 6 := lIhJl1t(y) and i = lhllH(y+h). If

6<
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then y + h is feasible, y + h E P0 and the length 6 of the following Newton step is
of order 62:

< (1- 62.

For 6 < 1 this implies convergence of Newton's method, and for 6 < it

implies that 6 < - /6a-2.
Proof: See Appendix. I

The importance of this lemma is that the constant 1- Vj can be explicitly stated,
depending only on a and not on the data of the functions fi.

For suitably damped Newton steps it is also shown in [12] that a fixed rate of
convergence holds for the case 6 > 1/4v/f.

In the following subsections the ,esult above will be applied to the function
po(x, A) (and h(x, A), H(x, A)) to analyze a "short-step" method for following the
path of centers. A "long-step" method for convex constraint functions whose Hes-
sians fulfill the Relative Lipschitz condition is analyzed in [2].

Remark 4
In the notation of the previous lemma, the fillowing statement holds: If the length
b = jIhljH(y) of the Newton step h starting at y for finding the analytic center x

of P fulfills 6 < - 1, then the "distance" from y + h to t is of the order 62; more9373

precisely. liy + h - 211H(y) - •V'62.
Proof: See Appendix. I

These properties show that the length of the Newton step (in the H-norm) is a
measure for the closeness to the center that can be used to analyze a method. In
this context let us state two further remarks that are not needed for the analysis
here but may be interesting for step-length coatrol in a numerical implementation.

Remark 5
The H-norm of the Newton step h(y) starting at a point y E P0 for finding the
center x of P is uniformly bounded for any y E P0 by Ijh(y)IIH(y) <_ V'M_. This
bound does not depend on a. A similar observation is made in Proposition 3.5 in
[12]. There are examples where IIh(y)IIH(y) E O(V.-); see e.g. [13].
Proof: See Appendix. I

Remark 6
Let some c with 0 < , < be given. If a point y satisfies Ily - x111(z) < ' then
y lies in the domain of quadratic convergence of Newton's method and the Newtoii
successor y' = y - H(y)-lh(y) satisfies

1 C2

ly' - -41(1) V -2

This is particularly interesting, since by Lemma 3 the whole set P is contained in a
fixed "multiple" of this domain, namely P C {y IlY - xll1(z) < 16m.v'f}.
Proof: See Appendix. 1



2.4. Short-Step Algorithm

Below, a short step algorithm is stated. This algorithm is too slow for a practical
implementation. Its rate of convergence however ensures polynomiality in the - ise
of a linear program (since the exact solution can be rounded from a sufficiently
accurate approximation [1]). Further, the same rate of convergence can be guar-
anteed for a convex program with .rstraints whose logarithmic barrier functions
are strongly self-concordant. Possible acceleration techniques for the algorithm that
are based on the theoretical results developed here are outlined in Subsection 2.7.
Implementations are discussed e.g. in [6, 8, 10, 2].

Under the assumptions of Sections 1 and 1.2 let a point yo E Po and some
number A0 > A* be given such that the first Newton step h(yo, Ao) _< 1/',Ix/Th.
Simple modifications of the algorithm Lo generate such a point yo and A0 are omitted
here (see e.g. (3]). Again, the objective function fo(x) is denoted by cTx.

Algorithm

1. k := 0; a := 1/(Rv/vo): ( = desired accuracy.

2. Yk-4- := Yk + Ilk where hk h(kk, Ak) = -D 2 ,(yk,AW)-lD (.k, Ak) "l .

:1. If ,k - cTyk+i < I stop.

,1. Ak+l := Ak - o'(Ak - cTyk+l).

5. k:=k + 1;goto l.

2.5. Convergence Analysis

In order to c 'sure convergence 2 of the algorithm the following two properties are
shown.
First, after the update of Ak+ 1 in step 1. the iterate Yk+j again satisfies

ilh(yk+I, Ak+l )lll(yk+,,, + ) <  /(l/-) (2.3)

This guarantees that the iterates remain feasible and close to the center.

Second,

Ak - cTyk+l 1 (cT Yk+i - A*), (2.4)

so, that the stopping criterion in step 3 is exact, and the gap Ak - A* in between
the Ut)er bound Ak for c 7yk and the (unknown) optimal value A' is reducei by a

factor of at least 0.4a in step 4.
Proof: See Appendix. I

This completes the proof of convergence!

2Only feasibility and convergence of the objectivc function value CTyk to the optimal value are
nLsiured.
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2.6. Bounded Condition Numbers

Implementations of the affine scaling algorithm for solving linear programs encounier
nearly singular Hessians if large step-lengths are chosen such thit the iterates lie
very near to the boundary of P. The following lemma shows that for nondegenerete
linear programs this difficulty can be partly eliminated if the iterates remain in a

neighborhood of the path of centers. Implementati,,s in [6, 10, 81 show that with
extrapolation techniques it is possible to ge.,erate fast algorithms that remain il
such a neighborhood.

Lemma 5 (Estimate of worst-case condit:on numbers for the matrices H(y) for
nondegenerate linear problems)
Consider a (primal) nondegenerate linear program and any Plgorithm generating a
sequence of points Yk in a a-neighborhood of the path of centers with a = -

Here a point y is in the a-neighborhood of the path of centers if the Newton step h
starting at y for finding the "nearest" center measured in the H-norm is less than
a, i.e.,

: argmin II3p(y,A)IIH(y,A)-l
A> 0

defines the "nearest" center x(A) to y, and the corresponding Newtcn step

h := h(y,A)= -D2 (y,A)D)(y,A)
T

satisfies IjhIIH(y,A) < a. Then there exists an c > 0 depending on the geometry of the
problem such that the condition numbers of the Hessians are uniformly bounded:
cond 2(H(yk)) _< 1/c for all k > 0.

To prove this lemma we first define a condition number f, z bounded convex
set A' (the "flatness" of the set M). Using the two-sided ellipsoidal approximation
of the set P(A) (by the matrix H(x(A))) we then obtain a bound on the condition
number of H(x) for x near the path if centers. The proof is given in the Appendix.
I

Note: The bound 1/c on the condition numbers in the preceding Lemma de-
pends on the geometry of the problem (on the "flatiiess" of the sets P(A)), and
unfortunately, as simple examples show, the magnitude of the bound of the condi-
tion numbers may be as bad as order 2L, where L is the length of the input of the
problem.

There are nondegenerate exarnles with nonlinear (e.g. convex quadratic) con-
straint functions for which no such bound exists.

2.7. Extensions

Nesterov and Nemirovsky [12] present an extension of the method presented above
handles certain non-convex functions f, whose level sets f,(x) < 0 describe convex
domains; for example, the function f : N" -. H? defined by f(x,t) := Ix11

2 - tII

for x E 1Wn, t E R? and t > 1143.

They consider the case that the functions fi are not necessarily convex, but
their barrier functions -ln(-f 3 (x)) are self-concordant (and hence convex) with
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the additional property that there exists a V < oc such that the Newton step h
starting at a point y E P0 for finding the center x of P Has a length IIhIH(y) < V9

uniformly bounded for all y E po. Some of the results presented above-like the
outer ellipsoidal approxii. ion of P or equation (2.4)-no longer hold, but the
convergence of Newton's method for finding the center is the same and convergence
of a inodified barrier method can be maintained as well.

Another modification of the method is an acceleration whe- following the smooth
path of analytic centers x(A) for A > A*. The tangent to this path can be computed
(as II(y)-lc) and used as a predictor for a next iterate down the path of centers,
while only one or two steps of Newton's method (with line search) will serve as a
corrector. Finding the right c-mpromise of staying close enough to the c9ntral curve
on the one hand and taking large steps along the tangent on the other hand, along
with effici ,nt factorizations (or preconditioners) of the matrices H(y) are crucial for
a practical program. Implementations of such predictor-corrector type appro, ches
are promising; see e.g. [6, 8, 7, 10].

2.8. Concluding Remarks

There are some difficulties when trying to deduce statements about polynomiality
from the above method.

2.8.1. Irraitional solutions

The r/NP- model for classifying the "difficulty" of classes of problems is unsatisfac-
tory if one considers interic,--point methods that give exactly the same (theoretical)
rate -)f convergence for linear and quadratically constrained convex problems For
linear problems this rate of convergence implies polynomiality of the class of lin-
ear programming problems, since one can round the exact (rational) solution from
a sufficiently accurate approximation in polynomial time. For the class of convex
quadratic problems, no statement about polynomiality can be deduced from this
convergence (since a quadratic problem may have an i-rational optimal solution
that to (late cannot be computed by rounding techniques). It is appropriate there-
fore in a more general context to define the notion of generalized polynorniality for a
class K of problems if one is able to compute the exact solution of any problem in
K up to d digits accuracy in a time that is bodnded by a polynomial in d multiplied
by a polynomial in the !ength of the data of the problem.
Tie definition of generalized polynomiality extends the notion of polynomial-time

algorithms in a natural way to problems that do not necessarily have a rational
sol]ition. So far such problems have escaped any classification, since the exact so-
luton often could not be computed at all, even if there was a good algorithm to

approximate it.

Clearly any problem thait is polynomial is also generalized polynomial, and vice
versa: a ge:,eralized polynomial problem that has a unique rati inal solution whose

length is bounded by a polynomial in the Lnt!rth of the data is aso polynomial in
the classical sense.
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2.8.2. Non-algebraic functions

Concerning the class of a-self-concordant problems, one further difficulty in extend-
ing the model of polynomiality is that the "length" of the input cannot be measured
in a natural way if the input includes non-algebraic functions.

Acknowledgements

The author would like to thank Prof. M. Saunders for his warm hospitality in Stan-
ford and for his editorial assistance in setting up this paper.

12



3. APPENDIX

The Appendix is divided into two subsections. In Subsection 3.1 we state some
useful and general results. In Subsection 3.2 we present the proofs to which we
referred to in Sections 1 and 2.

3.1. Some Useful Lemmas

We begin in recalling a slightly generalized version of the well known Cauchy-
Schwarz inequality.

Generalized Cauchy-Schwarz inequality:
If A, Al are symmetric matrices with IxTMXI < xTAx Vx E I n , then also

(aTMb)2 < aTAa bTAb Va, b E Bn. (3.1)

Proof: Without loss of generality assume that A is positive definite. (Else A, :=
A + cI is positive definite Vc > 0, take the limit as c - 0 for fixed a,b.) Assume
further that a,b j 0 and set p := \/b'A t fV-p-Alb, then it follows from

aTMb = 1 ((a + b)TM(a + b) - (a - b)TM(a - b)) that

(a <_) K -((a + b)TM(a + b) - (a - b)TM(a - b)(aT~lb)2 b))2

_ ((a + b)A(a + b) (a - b)(a16

1a + b)TA(a + b) + (a - b)TA(a - b)) 2

16

I (2aTAa + 2bTAb) 2 = -(aT Aa + bTAb) 2 .
16 4

When replacing a by a/y, and b by pb this implies

(aTMb)2 = ((a)TM( b))2 < 1( 1--aTAa + p 2bTAb) 2

p4 p

= (aTAa)(bTAb). I

The following estimate about the spectral radius for symmetric trilinear forms
was observed (without proof) by [12].

Spectral radius for symmetric trilinear forms:
If M E JRn"fxv represents a symmetric trilinear form M : R" x R," x V -

and A E "nxn a symmetric bilinear form, and p > 0 is a scalar such that

M[h,h,h]2 < pA[h,h]' Vh E ,,

then also
M[X,y,z] 2 < A[z,xA[y,y]A[z,z] VX,y,z E 1Wn . (3.2)

Proof: For x E 1Rn denote by M_ the (symmetric) matrix defined by yTMxz :=
M.[y,z] := MXz,y,z] Vy, z E Bn. Without loss of generality let /I = 1 (else substi-
tute A by rj/tA). As in the proof of (3.1) assume again that A is positive definite.
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By substituting M1[x,y,z] := M[A-1 2x, A-1/ 2y, A-1/ 2z] one can further assume
that A = I is the identity. Finally, it is sufficient to show that

IM[x,h,h]l _< llXII2l1hl 1WV,h E R'

holds, provided that M[h,h,h]2 <_ IIhIl Vh E BR' is true. (The remaining part
follows by applying the generalized Cauchy-Schwarz inequality (3.1) for fixed x to
M,!) Let

p := max{M[x,h,h] I St-llz!2 = 11h!1 2 = 1}

and let i, h be the (not necessarily unique) corresponding arguments. The necessary
conditions for a maximum (or a minimum if M[i, h, h] is negative) imply that

Mh)= /3 ( 2i ) + P ( I)
where 3 and p are the Lagrange multiplyers. From this we deduce that 3 = 1/2
and p = p (by multiplying from left with (iT,hT)) and therefore

Mh(.i + h) = u(i: + h),

which also shows that M[h, 1-hI, jj-+l.I p. Starting from a maximizing triple

(;i, h, h) this gives a way of generating an(other) maximizing triple (h, E +hi hII+hll2' 1II+hl12 '
Iterating this generating process, one obtains a sequence of maximizing triples that
converge 3 to a triple ( 7 (.-+/3h), 7(i +Oh), -y(i +,A)). By continuity of M this triple
is also maximizing. By assumption however, M[y(y + 0h), y(i + oh), y(y + 3h)]2 <

11y(i + 03h)11, which finishes the proof. I
In the following a quantitative result about the relationship of condition of the

Hessian matrix of p and the shape of the sets P(A) is stated. For this purpose it is
useful to dofine a condition number for the sets P(A).

Definition
Let M be a bounded convex set in inn that contains at least two points, and let
R be its closure. The function I : inn --+ R defined by 1(y) := max{yT(a -

b)/jyjl 2 I a,b E M} measures the length of M in direction y. The condition number
cond 2(M) E [1, ool is then defined by

rmax :=max{l(y) I IlIlY2 = 1), r,,,:= min{l(y) I IIyJ2 = 1}, cond 2(M) r a,
rmnin

and is a measure for the "flatness" of M. If M has an interior point, then its
condition is finite.

3The establishment of convergence is straightforward. Assume i h = 0 > 0 (else replace h by
-h). Define zP) = i, z(2) = h and P'-11 ) := (-(-) + z(*-))/I(z(k) + Z('_'))12. We show that
z(k) converges to 7(i + ,Oh). Writing z( k) as 7Y,(i + ,Oh) it follows by induction that 13k >_ 0 and

/k E [1, 1] (since e > 0!). Computing 3k+2 =,+l + (4 - h+, )-l-- shows that /?, is a linearly

converging sequence. Hence, 7k converges also.
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(Note that rmaz = max{Ila - b112 I a,b E M) and rmmn = min{flY12 I a + y €
MO Va E }.)

Proposition
Let M C R' be convex, i E M, H E 1R"', be positive definite and -1 E JR be such
that

t + h E M whenever 11hIIH < 1 and i + h V M whenever (thI11 > It.

Then
^cond2 (M) _< cond 2 (H) _< ycond 2 (M).7

Proof: Denote by vi V2... < vn, the eigenvalues of H. For positive definite
H the condition cond2(H) is given by !.. Using the definition of rmax and rmin and
the ellipsoidal approximation of M it is straightforward to show that

2 2-y_ 2 2-f
- < f i - and < 5 r,<, 1 .

From this the claim follows.

3.2. Proofs from Chapters 1 and 2

3.2.1. Proof of remark 2

Let the function f fulfill the Relative Lipschitz Condition (1.2) in y and let f(y) < 0.
Considering the Lagrange remainder formula for the function g :JR ---* R, g(O)
f(y + Oh) we obtain for IhIIhi(.) _< 0.5/(1 + M 113 ) that

f(y + h) = f(y) + Df(y)h + 2hT D2f(y + jih)h

with p E (0, 1).

Suppose now that f(y + h) > 0, then we have

0 < -f(y) !_ f(y + h) - f(y) = Df(y)h + 1 hTD 2f(y + jIh)h
2

:_ Df(y)h + 2hTD2f(y)h(1 + MpIlhIH()) (Rel. Lips. Cond.)

< Df(y)h + hTD2f(iy)h(1 + p2( 1 M
21+ M113))

From
(Df(y)h) 2 hT D2f(y)h 112  1

A()) + f(y) - H 4(1 + M1/ 3 ) 2

follows further that

-f (Y) and hTD 2f(y)h < MA)Df(y)h < 2(1 + M 1/ 3 ) -f(y) - 4(1 + M113 )3
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Substituting this into the first inequality we obtain

0< f() < -f(y) 1 -f(y) M0 <-fy)<_2(1 + M 113 ) + 24(l + MI/3)2 ( +  2(1 + M113) )

/ 1 1 p M <
Sf(Y) + + /

2(l + M113) 8(1 + M'/ 3 )2  16 (1 + M113)3)

which is a contradiction.
So f(y + h) must be negative as well.

3.2.2. Proof of Lemma 1

Suppose a function f is three times continuously differentiable in a point y E P0 and
fulfills the Relative Lipschtiz Condition (1.2) in y. We verify the self-concordance
for an arbitrary fixed direction h E R'. Using (1.2) one can bound the function
g :R-. IR,

g(O) := D2f(y)[h, h] - D2f(y + Oh)[h, h]

by
jg(O1)j :_ MIJOhIIH(y)D 2f( y)[h, h]

for sufficiently small Oh. The definition of II.IIH(y) allows to continue

[g()l <5 M181 ( nD2 f (y ) [h ' h i + ( D yh)2 ) 1/ Df( y)[h, h]
- \ -fAy) -f(Y)

< M10 (D 2 f(y)[h, h]/ 2 + D2 f(y)[h, h]IDf(y)[h]) (3.3)-- \(f(y))/2 -Afy) 1

(Using that V' + A ( -+b for a,b > 0.) Since g'(0) = -Daf(y + Oh)[h,h,h] it
follows

g(O) = g(O) + Og'(pO) = -OD 3 f(y + uOh)[h, h, hl

for some p E (0, 1). Hence

Ig(O)j = IOD3f(y + yOh)[h, h, h].

Sustituting this into inequality (3.3) yields

ID3f(y + pOh)[h,h,h]l < + D2fy)[hh]Df(y)[h) (3.4)(- f' , (_ (y)),/ _f - y)

In the sequel it is helpful to abbreviate the quantities

DfD(y)[h] D'f(y)[h, h] D 3 f(y)[h, h, h]

d, D f(y)h d2 .- and d3 :=

Without loss of generality assume d, 0 (otherwise substitute h by -h). By

convexity of f also d2  0. Inequality (3.4) is true for sufficiently small Oh and some
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p = p(0) E (0,1). Deviding (3.4) by -f(y) > 0 and taking the limit 0 --, 0 we
obtain

2d31 _ + d2du). (3.5)

Self-concordance is defined by the derivatives of W(y) -ln(-f(y)) in (1.1). Ob-
serve that

Dp(y)[h] = di, D2 p(y)[h, h] = d2 + d2 and D 3 W(y)[h, h, hi = d3 + 3d2d, + 2d .

Using (3.5) we estimate

IDap(y)[h, h, hIl ! 1d3 1 + 3djd 2 + 2d < Md 2  + (M + 3)dad 2 + 2d31.

Comparing this with (D 2 [h, h]) 3 /2 = (d 2 + d) d2 + 4i? it becomes obvious that a

suitable multiple of (D 2 ,[h, hi) 3/ 2 upper bounds ID 3 (y)[h,h,h]I, but finding the
best possible multiple is a tedious work which we would like to banish to a footnote 4 .

Recalling definition (1.1) we see that Vfa = 1 + M gives precisely the inequality in
the footnote. U

3.2.3. Proof of Lemma 2

For the sake of completeness we state this proof which is already given in Theorem
1.1 in (12J in slightly modified form.

Let an a-self-concordant function i, a point y E P', the gradient DV(y) = g(y), the
Hessian matrix D2%(y) = H(y), an arbitrary vector h E R' with 6 = IlhttH(y) <

and an arbitrary vector z E R' be given.
Let s E [0, 1] be such that y + sh E P'. We first show that for such s the inequality

1

(1 - sb61/)IZIIH(y) < IIzIIH(y+ah) < 1 - 6 fa-IlZjIH(y) (3.6)

holds. In a second step one can then show that for s = 1 still y + sh E P0 . To
evaluate how the H-norm of the vectors h and z changes for different matrices
H(y + ph), with p E [0, s] let us define

r(p) := I1hIH(y+ph) = hT D2 W(y + ph)h > 0 and

IIzll (y+ph) = zTD2(y + ph)z > 0.

4Abbreviating again a = di, b = r we obtain

D3 ,(y)[h, h, h] I < (Mb 3 + Mab2 + 3abW 2 + 2a 3)2

= M2b + 2M2 ab5 + 6Mab5 + 4Ma3 b3 + M 2a2 b' + 6Ma 2b4 + 4Ma'b2 + 9a2b4 + 12a4b 2 + 4a6

Using that 2ab < a2 + b2 we eliminate all odd powers and summarize
< 2M 2b6 + 2M2 a2 b4 + l1Ma 2b4 + 3Mb6 + 6MabP + 9a2b4 + 12ab + 4a.

< (4 + 8M + 4M 2 )(a6 + 3a4b 2 + 3a 2b' + b6 ) - .(1 + M) 2 (a2 + b2)3 = 4(1 + M)2 (D W[h, h])

Summarizing and taking square roots we get I D A(y)[h, h, h] < 2(1 + M)(D2 ,0(p)[h, h])3/2.
(Actually, even the constant 2(1 + *M) would work.)
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In order to show (3.6) we will show that the function $ is "nearly constant". The
changes of r and t can be estimated by their derivatives r'(p) and V'(p) using the
estimate about the spectral radius for symmetric trilinear forms (3.2) proved earlier:
From the a-self-concordance of Wa follows with (3.2) that

IDr3,,(y) Z1, Z2, z3]1 :_ 2vra-r2 W(Y) [ZI, Z, 1112 D 2 ( Y)[Z2, z211 12 D 2W(Y)[Z3, Z31]1 2

which implies that

Ir'(p)j _< 2V'(hTD2 V(y + ph)h) 2V (p)3 1 2  and

(p)I : 2V(WD 2(y + ph)h) 1 /
2 (Z T D 2 V-(y + ph)z) = and

Using the first inequality one can show that r 1/ 2 is "small", and with the second

inequality this implies that JVJ is "small". There are two cases:

1. r(p0 ) = 0 for some P0 E [0,s]. This implies r(p) = 0 for all p e [0,s]

(by integrating fpo+' r(p)dp for small 1,E and using the first inequality)
and then V'(p) = 0 for all p E [0,s] and t(s) = 4(0) which implies that the

H-norm of z does not change at all and that (3.6) is true.

2. P(p) > 0 Vp E [0,s]. In this case one can bound r/ 2(p) s follows:

-- 12r(p)-3/2r'(p)I _ Vp E [0,s] which implies that

r- 1/ 2(p) >_ F-/ 2 (0) - p-= - pvf/ > 0 (by definition of 6) or that

r1 / 2(p) < b/(1 - pbvfa). Inserting this in the second inequality one obtains

1,P,(P) ! 2 p6 '/'va p).

Again one may conclude (like above) that either 4(p) = 0 on [0, s] (in which
case there is nothing to show) or $(p) > 0 on [0,s]. If t(p) > 0 one can

estimate

j(ln I(p))'j = Idln( (p)) < 1 -:2bVa and thus

I ln(s)- In t(O) = In 4(p))' dpl <__ _ 2 -2 _ 
d p

CO()I = OJ - P1 21a d'a 1

-21n(1 - p6,/of)j 0 = 2In(1
1 - SbVa

This implies that

(s))"/< 1 n (11(0))1/2 10(0) - I -s65 and 1-a -< S b ,/'a

which is inequality (3.6).
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A short proof by contradiction shows that s = I is possible, i.e. that 1 = max{p E
[0, 1]1 y + ph E P'}: Suppose on the contrary that I > s := sup{p E [0, 1] 1 y +
ph E P'}, then by the inequality (3.6) it holds that D2V(y + ph) is bounded for
all p E [0, s), and thus v(y + ph) is bounded for all p E [0, s). The strong self-
concordance of V implies that p(x) goes to infinity as x approaches the boundary
of P, lim,-ap V(x) = oo so that y + sh V OP, the contradiction we were looking
for. 3

3.2.4. Proof of Remark 3

Substituting z by h, the Relative Lipschitz condition reduces to

IhT(D 2V(x + h) - D2V(x))hl 3(hTD2V(X)h)3/ 2 ).

Defining p(t) := hT(D 2(p(X + th) - D 2 V(x))h, pI'(t) = D3 p(x + th)[h,h,h], one

obtainq from
p(t) < /(hTD 2V(x)h) 3/2t for t > 0 that p'(0) < I3(hTD 2 p(x)h)312. This is exactly
the condition for a-self-concordance with 0 = 2v/'a from which the claim follows. 1

3.2.5. Proof of concavity in (2.2)

The proof of concavity of T given in [14] before statement (2.8) can be generalized
in a straightforward way to nonlinear convex functions f1: The term (A - fo(x)) q

has the same structure as the remaining m terms and is therefore omitted here for
the sake of clearity. One obtains

D T (x) 1 Dfi(x)
=(x) fn(x)=--

and

D2'%(x) DTi(x)D 1Q(x) = D2 in '1(X) 1 m D 2f,(x) DTf,(x)Df:(x)T(X) jk2(X) ' = D 1n 2x )  -

Hence,

D2 %k(x) 1 I D2f,(X) DTI.(x)Df,(x) + 1 DTf 1 (X) " ______

T() M M )f2 (X) ; 2 f,(x)

Note that for arbitrary vectors h and vi, ..., vm E JR' we have

hT (m Z vivT)h = m Z(vTh) 2 > (Z vTh) 2 = h((F ti)(E vT))h"

Taking vi := DTfI(x)/f.(x) and observing that fi(x) < 0 and '1(x) > 0 this implies
that D2'(x) is negative semidefinite i.e. T is concave. I
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3.2.6. Proof of Lemma 3

This proof proceeds in two steps. First we show that the function P is well approxi-
mated by its quadratic Taylor approximation q. In the second step this information
is used to relate the (ellipsoidal) level sets of q to the level sets of %P = e - '/m' .

Let y E P0 be arbitrary and define the quadratic approximation qy of P in y by

q,(x) := v(y) + D(y)(x - y) + I(X -y)T D'v(y)(x - y).

For h E 1'n and sufficiently small ji (such that IjphIlH(Y) < 1/f) define the differ-
ence of c and q. in the point y + psh by

d() :-= qy(y + p1h) - V(y + ph).

The Lagrange remainder formula applied to d yields

d(,) =6d"...(vut) with some v E (0,1).
6

Using the definition of self-concordance one obtains

d 3 (y + tzh) = D (y + ih)[h,h,h] < 2VJt D 2 p(y + h)[h,h 3 / 2 .dp3

For IIshIIHt(,) < ' this can further be bounded by Lemma 2:

D2 p(y + ph)[h,h]3/ 2 < D2p(Y)[hh]( 3/

Inserting the last two estimates in the above Lagrange remainder formula allows us
to continue

u3  , 3/2 _ 3 Il11(,11

d(1 - vrIIl, hllH(, 3 (1 - VrStljhllm ,))3

for Ilphh(y) < 1/vr/. This completes the first step of the proof.
The last inequality will now be used to obtain information about the increase of vp
- and thus also about the decrease of T (defined in (2.2)) - around its maximunm x
(the analytic center of P). This allows to construct a decreasing linear function on
the ray i + 1A, p > 0 that bounds the concave function IP in y E [1, o) from above.
Here, for h E N' we define h := h/(4VfIIhlII(Y)). The estimate of d for h =i now
implies that

d(a) < J' IhllH(y) 1611hll2,(Y,)
d -l < - 1/4) 3 < 8

Since qg(i + h) = H()t+ IthIW(±) it follows that

-+611hll m,) +>l6I.hII+) 3 11hll12)
+ + 2 81 > _>+ l) 011,,I1(r)s
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Using this and the definition of T yields

%(.t + h=exp(- v ( + h)) < exp(- i )exp( !)

= (t) exp( 1 Om Ilml()).

Let z :< 1- " Since exp(t) 1 + t + t 2 for t < 0 one can conclude that
33 9 z

exp(--z) 5 1 - -z + 9z <1 -Z,
10 TO1 200 4

which implies that z

T(. + h) < Z()( .-

Setting T(x) := -oo for x V P, T is well defined and concave everywhere in 1R'.
Now let h be such that llhllH(,) > 16mv = -1IjhII!(t), then we have T(i + h) < 0,
i.e. x + h 0 P (since T(x) > 0 for x E P). 1

3.2.7. Proof of Lemma 4

(Simplified version of the proof in [12], Prop. 1.2, Th. 1.2, 1.3 and 1.4)
Define y(s) := y + sh for s E [0, 1] where h = -D 2 (y)Dqp(y)T is the Newton step
starting in y to minimize p, then by Lemma 2: y(s) E P0 for all s E [0, 1] and

IzT(D2Cp(y) - D2 P(Y(s)))zj < ( 1 _ 1)zTD2P(y)z"
(1 - sVa[jhH(Y)) 2

Using the generalized Cauchy-Schwarz inequality (3.1) and defining L := vf-jjhIIH(y)
we obtain

d- hT 2 (p(y)zI = Ihr(D2V(y(s)) - D2 0(y))zj <

((1- 1)WzTD2p(y)z hTD2V(y)h= 1 Sp) 2 - )lZllH() -

The left hand side is the absolute value of the derivative W'(s) where r, is defined
rD(s) := Dp(y(s))z- (1- s)D((y)z. By integration, (K(0) = 0)! one can thus bound

n(S ) i j 1" - 1 d t = I Z IIH ( ) S 2112

-- t- V45 1-si"

For s = 1, y(s) = y + h this implies

IK(1)I = IDv(y + h)zl < _ IIZIIH(y)

Choosing z - h - -D 2 p(y + h)-I D (y + h)T as the next Newton step one obtains

_1I1 p2 1hIln(y) < /1 2 llhlln(y+h)
lhln(y+h) = IDp(l +hj< 1- /I Vrh < (-) 2  V

the last inequality following from Lemma 2. With b := A/v/' the claim follows
when deviding the last line by IfhII( +h). U
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3.2.8. Proof of Remark 4

The previous Lemma implies that if 6 = 6o _ and Newton's method starting in

yo := y is iterated one obtains a sequence of strictly feasible points Yk = Yk-1 + hk-I
for k > 1 where the norms II.IIH(y,) of the Newton steps hk converge to zero. Defining

k :-- ]jhkjjH(y,) and - 81: r it follows (again from Lemma 4) that

bk < 7 -1 < 1( 7 60)2k.

Here, the norm bo of the first Newton step ho is bo = IJhoIIH(yo) < 9- By Lemma

2 this implies for any z E JR' that

1 9 /-6IizIIH(u,1) < 1-/6 I-IlH{ °) < IIZIIH.{ o.

Since bk is a decreasing sequence, this relative change in two subsequent norms is

always bounded by 2 so that
1,9 2 2,k :51 3 6 00o 1 17 2 6 b
(hkllo)- 5 7 -(--1 (-) and S'llhkIIHyu,) < 3- 02k=1 215

Since limj. k>l IhkIIH(yo) = 0 also yj -- and the claim follows.

3.2.9. Proof of Remark 5

(i) First let f be a convex C 2 -function, for f(x) < 0 be r(x) := -ln(-f(x))

its logarithmic barrier function, g(x) := Dqp(x)T D the gradient of V and
2V(X)~~ ~~ +-f f xTz)x)D

H(x,E) := I(x)+EI = D) +- L(x) +EI a perturbed Hessian

matrix ofV. Then H(x,c) is positive definite for all > 0 and

llg(X)12() - Df(x) (Df(x) T Df(x) + D2f(X) +'I) Df(x)T

0-fAX) k f2(X) -f(x) -f(x)

To simplify let v :=D()T and G := D2 f + cl, then G is positive definite and

llg(x)1l-(,() = vT(G + vVT)-Iv = vT(G- 1 - GvvTG-'vH V 1+ vTG-Iv~v

(Note again the equality IIgII 2-' = gTH-1g = hTHh = IIhI21 for h = H-1g.)
(ii) The second part of the proof now follows immediately (taking the limit as

S-* 0) from another "Cauchy-Schwarz-type" inequality stated in Proposition 3.5 of
[121 without further comment (or proof).
If IIgi1 , = pi for 1 < i < m (with positive definite matrices Hi)

then II E g IIH,)-<
Proof: Observe that

i = min{1 >_ 0 1 (gTh) 2 < hTHjh Vh E IR'5. We want to show that
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f := min{p >_ 0 1 ((Egt)h)2 < ,IhT(EHi)h Vh E R'} fulfills fg pi. We may
also write
ft= min{p >_ 0 I (XTh)2 <, ~Hhrtih Vh: (gTh)2 < pihTHih} (since the last set
of inequalities is by definition of pi always satisfied). From this definition of ft it is
obvious that fi fit for any p satisfying

0 = sup{( a,)2 - f, , Eai , R, > a20, -.wA 01.

(If we added the additional restriction that ai = gTh and 3i = hTHih, then ob-
viously ft = fA would be feasible, i.e. would be satisfying that the "sup"= 0. By
allowing a (possibly) larger set ai, /3i here, the "sup" may increase and it might
require a larger value ft > fi to ensure feasibility of ft.) For any p $ 0 the sign
of the "sup" is invariant under the transformation "Vi : /3i - p2/3,, ai - pai".
Hence we may add the additional constraint E/3i < 1 while keeping the same set of
feasible values ft and guaranteeing that on the resulting compact domain the "sup"
is actually a maximum for which we can consider the necessary conditions. For this
purpose define e := (1, ,)T E B?-,
a := (al,a 2 ,... ,am)T E ff'm, GO := (O,...,O;eT)T E B?2m and

i -- (0,... ,0, 2a i, 0 ... , 0; 0'.... 0 , -- 1,,,O .... 0 ) T  E R?2,

for 1 < i < m, where only the i-th and the (m + i)-th entry of &, are nonzero. Since

/3i= 0 implies ai = 0 we may restrict ourselves to /3 > 0. (And also Ai > 0.) Then
the necessary conditions for a maximum imply

(2e T a eT; --feT)T = Pogo + Pill + ... + Pmro ,

where Pi E B? are the Lagrange multipliers. For i > 1 we deduce from the (m+ i)-th

entry of &, that pi = . and the i-th entry tells us then that ai = eTa +-±j."

Substituting this in the "sup" yields
eta 2 {eTa \

0 = max{( +-p0) (Z.,i) - t(-'/i) C ,ToIl)' < til.
+ PP + PO

Substituing now /3i we may continue

f (_ToreTa 2
< max{( _a) 2(jp,)2 :(-., (t P)

Factoring '-T' )2 > 0 it is obvious that the last term is zero for any ft p /p (and
in particular for ft = i I

3.2.10. Proof of Remark 6

Let again H(x) = D 2 Vo(X), g(X) = DV(x)T and h(x) = -H(x)-1g(x) be the Newton

step starting in x for finding the analytic center i of P. Let y E P0 and ( < - be
given such that Ili - YIIH(t) -< t and seth := 2 - y.
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For some fixed vector z E R" define I : R -- JR by I(p) := g(y + ph)Tz, then

1(1) = 0 (for any z) and

'(p) = hT H(y + ih)z, l"(y) = D3Vh(y + ,h)[h, h, z],

and 1(s) = 1(0) + pi'(0) + p 21"( ) for some E [0, y] by the Lagrange remainder

formaula. For =- 1 one obtains

0 = g(y)Tz + hTH(y)z + I pD3(y + 00,hz]
2

From a-self-concordance follows with (3.2) that

IzT(g(y) + H(y)h)l _< V hTH(y + h)h (zT H(y + h)z) 1/ 2 .

Let d := g(y) + H(y)h (then H(y)-Id = h(y) - h) and let z H(y)-'d
IH(Y)',dlHwy)-

lH()-d then the above formula reduces to
(drH(y)-'d)ll2 '

dTH(y)-1 d - 2 IIjH(y)-d(+h) (3.7)(dTH(y)_ld)1/2 H#51 l(y+ hl I!lU(y)_ dllHmy)

By assumption, IhIIH(,+h) _ -). Relating the norms WIIH(y+h) 11-11H(, h) and

II.IIH(y) again by lemma 2 it is straightforward to show that for c _1 int-quality
(3.7) implies

I; tI(y)- 1dlIH (Y) = (d T H (y)- 'd) " - V ( 1 2

for any E [0, 1]. )5 Note that x - H(y)- 1 d is the result of the Newton step.

Applying Lemma 2 one more time yields

1 ( 3llH(Y)-'dIHu(±) <- V/S(i - )

which establishes quadratic convergence.

3.2.11. Proof of (2.3)

Suppose k satisfies 6 k := llhklIw(, A) = IIh(Yk, Ak)II(y,,A,) - 1/(4v'() and Yk+I
Yk + hk.

By Lemma 4 then 6 := IIh(yk+I, A)II,,(yk+l,\k) _ 1/(9NfO).
We examine the effect on h and H caused by the update of Ak+l. Denote by g(y. A)
the gradient

g(y A)T := 'b p(y,A) = q cTy) M D -f(y)

5For 0 or t = l it follows directly from Lemma 2, for t E (0, 1) it follows when applying
Lemma 2 twice and using t < 14
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(p as defined in (2.1)) and h(yk+l,Ak) = -IIJ(Yk+1, Ak)-1g(yk+1,Ak) (_ 1/(9,/')).
The update of Ak+1 = Ak - a(Ak - cTyk+l) effects

tirc

g(yk+l,Ak+l) = 9(Yk+l,Ak) + q acTy+ -(Yk+l, Ak) + qa

with CI/(Ak+l - cTyk+). The 1--norm of the second part can be bounded by

I q o' c j+ H (y . , + n ) -, = ( q a J I I (y k + l , A k 4  1 ) ' q a r ) 1 / 2

< a,( (I(Yk+l, 00)+ q )Y <)/< tq

(since II(Yk+i , C) is positive definite).

Further, from II(Yk+I, Ak+1 ) = H(Yk+i, Ak) + qq 2cT follows that

lih(yk+, A +1 )1II(yk+,.k.+,) = IIg(Yk+1, Ak+l)ll.(y,+,,\,+,)-I

< 19(Yk+ 1,Ak)llH1(y,+,,.x+l)-: + ,

< JJ(k1 + ailq/ + Oa/q.9

(Ilere, q is chosen q = m.) This shows (2.3)

3.2.12. Proof of (2.4)

Denote the analytic center x(Ak) by x, then the iterate Yk+1 meets the assumptions
of Remark .1 so that

IIYk+I - JWl. . < IIh(k+ ,Ak)IH(ly+,,A,) + IIYk+1 + h(Yk+l, Ak) -ImHY+,,\0

1 3/_(,1 2 7

By the equivalence of the /I-norms (Lemma 2) the same distance measured in the
central norm fulfills IlYk+1 - ±III(k) IIvk+1 - XtI(y,+,A,,)/(1 - ) 0.1" From
the inner ellipsoidal approximation of P(A) in part I of Lemma 2 follows that Yk+I
is at most 15 percent "away" from the center,

c TY,.+ - cT i < 0.15( max {cTx} - cT) < 0.15(Ak - c 'J ).
XEP(Ak)

It is easy to show (see. e.g. [3], Lemma (3.8)) that in the case of convex constraint
functions f. and a linear objective function fo the following inequality holds in the
analytic center x(A) of P(A):

A - cTr(,) T (A( _ *).

(Only for q _> m in (2.1)). With the previous result this implies that

A - CT >085 )

from which the claim follows.
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3.2.13. Proof of Lemma 5

In the beginning of this chapter the condition number of a bounded konvex set M
has been defined. Under the assumptions of section 1, the set P = P(A = cc)
has a finite condition cond 2(P) < 00. Since the program is also nondegenerate
there exists a A0 > A* (the unknown optimal value) such that P(Ao) is a simplex
S bounded by the ojective function fo(x) -_ Ao and the n linearly independent
constraints that are active in the optimum. Fu.r A E (A*, Ao] the set P(A) is sim-
ilar to S and cond 2(P(A)) = cond 2(S). It is a simple exercise to verify that for
A > A* the condition cond 2(P(A)) is a contiuous function of A. Since the limits
lim... cond 2(P(A)) = cond 2(P) and limA_., cond 2(P(A)) = cond 2(S) are finite
one may conclude that there exits a number C < oo such that

cond 2(P(A)) < C for A E (A*,oo).

Remark: Jn special cases it may happen that for some A E (A*, cc) the condition
numbers are not monotone and cond 2 (P(A)) > max{cond 2 (P), cond 2 (S)} it seems
however that always cond 2 (P(A)) < cond 2 (P) + cond 2 (S) holds.

We recall the ellipsoidal approximation of the sets P(A) around the analytic
centers x(A) with the matrices H(x(A), A) and -f = m - 1. (For the case of a Linear
Program [14] proved a better inclusion with similarity ratio (m - 1).)
Therefore cond 2(H(x(A), A)) _< (m - 1)2C 2 =: C for A E (A*,oc).
Now let a point Yk lie in the domain of quadratic convergence of Newton's method,
i.e. b := Ilh(yk,Ak)llH(Yk,k) 4 1, where x(Ak) is the "nearest" center. From the

proof of (2.4) (and from Lemma 2) follows that the Hessian matrices in x(Ak) and
in Yk + h(yk,Ak) fulfill

1
O.85IjzIIH(.(Ak) Ak) IIZIIH(yk,+h(Yk,Ak),Ak) 8. 11 IHx(,)

for any z E B?'. Similarly, the Hessian matrices in Yk and in Yk + h(yk,Ak) fulfill
the same relationship with the factors a resp. 4 (by Lemma 2). Putting this
together the eigenvaluc: of the Hessian matrices in Yk and x(Ak) change at most
by a factor of 0 E U ) so that cond 2(H(yk,Ak)) _< 802 cond 2(H(x(Ak),Ak)) _<
3cond 2 (fI(x(Ak), Ak)). This completes the proof of Lemma 5.
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